Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[[[aqua(2-methyl-4-oxo-4H-pyran-3-olato- $\left.\kappa O^{3}, O^{4}\right)$ copper(II)]-μ-chloro] monohydrate]

Mamiko Odoko,* Kyouta Yamamoto and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
Correspondence e-mail: odoko@phar.kindai.ac.jp

Received 31 July 2002
Accepted 23 August 2002
Online 30 September 2002
In the title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cu}^{\text {II }}$ atom has a deformed square-pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five-membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.

Comment

Maltol (3-hydroxy-2-methyl-4H-pyran-4-one), (I), is a naturally occurring non-toxic compound. It has the ability to be deprotonated readily ($\mathrm{p} K_{a}=8.38$; Hedlund \& Öhman, 1988) and can act as an anionic chelating O, O^{\prime}-bidentate ligand towards a number of biologically active metal ions. The metal complexes of (I) can be solubilized in water, and many biological studies have been reported employing this compound as a ligand. For instance, the $\mathrm{Al}^{\mathrm{III}}$ complex has been studied in relation to apoptosis (Tsubouchi et al., 2001) and Alzheimer's disease (Finnegan et al., 1986), the $\mathrm{Fe}^{\mathrm{III}}$ complex has been used in the treatment of iron deficiency anaemia (Harvey et al., 1998), and the V^{IV} complex is a potent insulin mimic (Caravan et al., 1995). The efficacy of the $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Sn}^{\mathrm{II}}$ complexes in oral-care formations (Creeth et al., 2000) has also been reported. A number of crystal structures

of maltolate-metal complexes have been reported, viz. $\mathrm{Al}^{\text {III }}$ (Finnegan et al., 1986; Yu et al., 2002), V^{IV} (Caravan et al., 1995; Sun et al., 1996, 1998), $\mathrm{Fe}^{\mathrm{III}}$ (Ahmet et al., 1988), $\mathrm{Zn}^{\mathrm{II}}$
(Ahmed et al., 2000), Mo ${ }^{\text {IV }}$ (Lord et al., 1999), Ru ${ }^{\text {IV }}$ (Fryzuk et al., 1997), $\mathrm{Sn}^{\mathrm{II}}$ (Barret et al., 2001) and $\mathrm{Sn}^{\mathrm{IV}}$ (Denekamp et al., 1992; Bhattacharya et al., 1994). In this study, to obtain further evidence for the chelating mode of maltol with divalent metal ions, we have analyzed the crystal structure of the maltolate$\mathrm{Cu}^{\text {II }}$ complex catena-poly[[[aqua(2-methyl-4-oxo-4H-pyran-3-olato- $\kappa O^{3}, O^{4}$)copper(II)]- μ-chloro] monohydrate], (II).

The crystal structure of (II) is shown in Fig. 1. The Cu atom is surrounded by five atoms in a square-pyramidal coordination geometry (Fig. 1), in which the basal plane is made up of two O atoms of the maltolate ligand, one Cl atom and one water O atom, with the Cl atom of the next complex occupying the apical position. The Cu atom is shifted by about $0.15 \AA$ from the average basal plane toward the apical Cl atom. The deprotonated hydroxyl and ketone O atoms of the ligand form a five-membered chelate ring with the Cu atom. The ketone $\mathrm{C} 1-\mathrm{O} 2$ bond length [1.272 (2) \AA] is longer than that of free maltol [1.244 (3)-1.254 (3) Å; Burgess et al., 1996], and shorter than the enol bond length $[\mathrm{C} 2-\mathrm{O} 3=1.339$ (2) \AA] (Table 1). This indicates a distinction between Lewis acid-base interactions for the two types of O atoms. The Cl atom coordinates from the apical position more weakly to the tetracoordinate basal plane around the Cu atom, forming a square-pyramidal geometry, then the complexes are related by the a glide forming the polymeric chain $[\mathrm{Cl} 1-\mathrm{Cu} 1=2.2445(6) \AA, \mathrm{Cl} 1-$ $\mathrm{Cu} 1^{\mathrm{i}}=2.7546(9) \AA, \mathrm{Cu} 1-\mathrm{Cl} 1-\mathrm{Cu} 1^{\mathrm{i}}=124.04(3)^{\circ}$ and $\mathrm{Cl} 1-$ $\mathrm{Cu} 1^{\mathrm{i}}-\mathrm{Cl} 1^{\mathrm{i}}=101.38(2)^{\circ}$; symmetry code: (i) $\left.-\frac{1}{2}+x, \frac{1}{2}-y, z\right]$ (Fig. 1). The two different $\mathrm{Cu}-\mathrm{Cl}$ distances in the title

Figure 1
ORTEPII (Johnson, 1976) drawing of the title compound, showing the atomic numbering scheme. Ellipsoids for non-H atoms are shown at the 50% probability level.
compound are similar to those in the 5 -formyluracil thiosemicarbazone $-\mathrm{Cu}^{\mathrm{II}}$ complex [apical $\mathrm{Cu}-\mathrm{Cl}=2.665$ (3) \AA and basal $\mathrm{Cu}-\mathrm{Cl}=2.260(3) \AA$], and the longer apical $\mathrm{Cu}-\mathrm{Cl}$ bond is due to a Jahn-Teller effect (Ferrari et al., 1998). The polymeric chain and an analogous coordination sphere were observed in the crystal structure of catena-poly[bis(2-aminopyrimidine) aquacopper(II)- μ-sulfato dihydrate] (Lumme et al., 1996).

In the crystal structure of (II), there are $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions between the solvate water molecules and the deprotonated O atoms of the maltolate ligands, and between the solvate water molecules and the coppercoordinated water molecules (Table 2). Also, stacking interactions exist between neighboring pyran rings [O1 $\cdots \mathrm{C} 1^{\mathrm{ii}}=$ $3.493(3) \AA, \quad \mathrm{C} 2 \cdots \mathrm{C} 4^{\mathrm{ii}}=3.506(3) \AA$ and $\mathrm{C} 3 \cdots \mathrm{C} 5^{\mathrm{ii}}=$ 3.515 (4) Aं; symmetry code: (ii) $-x,-y, 1-z]$.

The title compound is composed of maltolate and metal in a 1:1 ratio. This is the first observation of a 1:1 metal complex of maltol, although 2:1 and 3:1 maltolate-metal complexes, with $\mathrm{Zn}^{\mathrm{II}}$ (2:1), $\mathrm{Sn}^{\mathrm{II}}$ (2:1), $\mathrm{Fe}^{\mathrm{III}}$ (3:1) and $\mathrm{Al}^{\mathrm{III}}$ (3:1), have been reported. In all the metal complexes of maltol reported, the bidentate maltolate ligand forms a five-membered chelate ring.

Experimental

Maltol and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were dissolved in a 50% ethanol-water mixture in a $4: 1$ molar ratio. Green plate-shaped crystals of (II) were obtained by slow evaporation at room temperature.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=260.13$
Monoclinic, $P 2_{1} / a$
$a=7.163$ (2) \AA
$b=18.604(2) \AA$
$c=7.357$ (2) \AA
$\beta=113.38$ (2) ${ }^{\circ}$
$V=899.9$ (4) \AA^{3}
$Z=4$
$D_{x}=1.920 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 22
\quad reflections
$\theta=14.6-15.0^{\circ}$
$\mu=2.71 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, green
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.527, T_{\text {max }}=0.763$
2302 measured reflections
2069 independent reflections
1778 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.009 \\
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 9 \\
& k=0 \rightarrow 24 \\
& l=-9 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 0.5 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.021$
$w R\left(F^{2}\right)=0.058$
$S=1.07$
2069 reflections
132 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0270 P)^{2}\right. \\
& +0.3833 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.34 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.28 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0047 \text { (8) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Cl} 1-\mathrm{Cu} 1$	$2.2445(6)$	$\mathrm{Cu} 1-\mathrm{O} 4 W$	$1.965(1)$
$\mathrm{Cl} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.7546(9)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.272(2)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.957(1)$	$\mathrm{O} 3-\mathrm{C} 2$	$1.339(2)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.947(1)$		
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$169.82(6)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 4 W$	$86.49(6)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$93.45(4)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{ii}}$	$91.98(5)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O} 4 W$	$94.13(5)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4 W$	$169.75(6)$
$\mathrm{Cu} 1-\mathrm{Cl} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$124.04(3)$	$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 1$	$110.9(1)$
$\mathrm{Cl} 1^{\mathrm{iii}}-\mathrm{Cu} 1-\mathrm{Cl} 1$	$101.38(2)$	$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 2$	$109.4(1)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{Cl} 1^{1 i}$	$88.72(6)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$118.0(2)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$84.84(5)$	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	$116.5(2)$

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, z$.

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O} 5 W^{\text {i }}$	0.79 (2)	1.94 (2)	2.711 (2)	168 (3)
O4W-H4WB $\cdots \mathrm{O} 5 W$	0.80 (2)	1.94 (2)	2.706 (2)	162 (2)
$\mathrm{O} 5 W-\mathrm{H} 5 W A \cdots \mathrm{O}^{\text {iii }}$	0.77 (2)	2.16 (2)	2.910 (2)	164 (3)
$\mathrm{O} 5 W-\mathrm{H} 5 W B \cdots \mathrm{O} 3^{\text {ii }}$	0.79 (2)	1.98 (2)	2.768 (2)	172 (3)

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (ii) $1+x, y, 1+z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, 1+z$.

Fourier maps and their coordinates refined with fixed isotropic displacement parameters.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1078). Services for accessing these data are described at the back of the journal.

References

Ahmed, S. I., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. \& Laurie, S. H. (2000). Polyhedron, 19, 129-135.

Ahmet, M. T., Frampton, C. S. \& Silver, J. (1988). J. Chem. Soc. Dalton Trans. pp. 1159-1163.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Barret, M. C., Mahon, M. F., Molloy, K. C., Steed, J. W. \& Wright, P. (2001). Inorg. Chem. 40, 4384-4388.
Bhattacharya, S., Seth, N., Gupta, V. D., Nöth, H., Polborn, K., Thomann, M. \& Schwenk, H. (1994). Chem. Ber. 127, 1895-1900.
Burgess, J., Fawcett, J., Russell, D. R., Hider, R. C., Hossain, M. B., Stoner, C. R. \& van der Helm, D. (1996). Acta Cryst. C52, 2917-2920.
Caravan, P., Gelmini, L., Glover, N., Herring, F. G., Li, H., McNeill, J. H., Rettig, S. J., Setyawati, I. A., Shuter, E., Sun, Y., Tracey, A. S., Yuen, V. G. \& Orvig, C. (1995). J. Am. Chem. Soc. 117, 12759-12770.
Creeth, J., Molloy, K. C. \& Wright, P. (2000). Oral Cove Compositions. International Patent WO 00/16736.
Denekamp, C. I. F., Evans, D. F., Slawin, A. M. Z., Williams, D. J., Wong, C. Y. \& Woollins, J. D. (1992). J. Chem. Soc. Dalton Trans. pp. 2375-2382.

The H atoms of the ligand molecule were allowed for as riding atoms. Those of the water molecules were located from difference

metal-organic compounds

Ferrari, M. B., Fava, G. G., Leporati, E., Pelosi, G., Rossi, R., Tarasconi, P., Albertini, R., Bonati, A., Lunghi, P. \& Pinelli, S. (1998). J. Inorg. Biochem. 70, 145-157.
Finnegan, M. M., Rettig, S. J. \& Orvig, C. (1986). J. Am. Chem. Soc. 108, 50335035.

Fryzuk, M. D., Jonker, M. J. \& Rettig, S. J. (1997). Chem. Commun. pp. 377378.

Harvey, R. S., Reffitt, D. M., Doig, L. A., Meenan, J., Ellis, R. D., Thompson, R. P. \& Powell, J. J. (1998). Aliment. Pharmacol. Ther. 12, 845-848.

Hedlund, T. \& Öhman, L.-O. (1988). Acta Chem. Scand. Ser. A, 42, 702-709.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lord, S. J., Epstein, N. A., Paddock, R. L., Vogels, C. M., Hennigar, T. L., Zaworotko, M. J., Taylor, N. J., Driedzic, W. R., Broderick, T. L. \& Westcott, S. A. (1999). Can. J. Chem. 77, 1249-1261.

Lumme, P. O., Knuuttila, H. \& Lindell, E. (1996). Acta Cryst. C52, 51-56.

Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation \& Rigaku (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sun, Y., James, B. R., Rettig, S. J. \& Orvig, C. (1996). Inorg. Chem. 35, 16671673.

Sun, Y., Melchior, M., Summers, D. A., Thompson, R. C., Rettig, S. J. \& Orvig, C. (1998). Inorg. Chem. 37, 3119-3121.

Tsubouchi, R., Htay, H. H., Murakami, K., Haneda, M. \& Yoshino, M. (2001). Biometals, 14, 181-185.
Yu, P., Phillips, B. L., Olmstead, M. M. \& Casey, W. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2119-2125.

