metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

catena-Poly[[[aqua(2-methyl-4-oxo-4*H*-pyran-3-olato- κO^3 , O^4)copper(II)]- μ -chloro] monohydrate]

Mamiko Odoko,* Kyouta Yamamoto and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan Correspondence e-mail: odoko@phar.kindai.ac.jp

Received 31 July 2002 Accepted 23 August 2002 Online 30 September 2002

In the title complex, {[$Cu(C_6H_5O_3)Cl(H_2O)$] $\cdot H_2O$ }_n, the Cu^{II} atom has a deformed square-pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five-membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.

Comment

Maltol (3-hydroxy-2-methyl-4*H*-pyran-4-one), (I), is a naturally occurring non-toxic compound. It has the ability to be deprotonated readily ($pK_a = 8.38$; Hedlund & Öhman, 1988) and can act as an anionic chelating *O*,*O'*-bidentate ligand towards a number of biologically active metal ions. The metal complexes of (I) can be solubilized in water, and many biological studies have been reported employing this compound as a ligand. For instance, the Al^{III} complex has been studied in relation to apoptosis (Tsubouchi *et al.*, 2001) and Alzheimer's disease (Finnegan *et al.*, 1986), the Fe^{III} complex has been used in the treatment of iron deficiency anaemia (Harvey *et al.*, 1998), and the V^{IV} complex is a potent insulin mimic (Caravan *et al.*, 1995). The efficacy of the Cu^{II} and Sn^{II} complexes in oral-care formations (Creeth *et al.*, 2000) has also been reported. A number of crystal structures

of maltolate-metal complexes have been reported, *viz*. Al^{III} (Finnegan *et al.*, 1986; Yu *et al.*, 2002), V^{IV} (Caravan *et al.*, 1995; Sun *et al.*, 1996, 1998), Fe^{III} (Ahmet *et al.*, 1988), Zn^{II}

(Ahmed *et al.*, 2000), Mo^{IV} (Lord *et al.*, 1999), Ru^{IV} (Fryzuk *et al.*, 1997), Sn^{II} (Barret *et al.*, 2001) and Sn^{IV} (Denekamp *et al.*, 1992; Bhattacharya *et al.*, 1994). In this study, to obtain further evidence for the chelating mode of maltol with divalent metal ions, we have analyzed the crystal structure of the maltolate–Cu^{II} complex *catena*-poly[[[aqua(2-methyl-4-oxo-4*H*-pyran-3-olato- κO^3 , O^4) copper(II)]- μ -chloro] monohydrate], (II).

The crystal structure of (II) is shown in Fig. 1. The Cu atom is surrounded by five atoms in a square-pyramidal coordination geometry (Fig. 1), in which the basal plane is made up of two O atoms of the maltolate ligand, one Cl atom and one water O atom, with the Cl atom of the next complex occupying the apical position. The Cu atom is shifted by about 0.15 Å from the average basal plane toward the apical Cl atom. The deprotonated hydroxyl and ketone O atoms of the ligand form a five-membered chelate ring with the Cu atom. The ketone C1-O2 bond length [1.272 (2) Å] is longer than that of free maltol [1.244 (3)–1.254 (3) Å; Burgess et al., 1996], and shorter than the enol bond length [C2-O3 = 1.339 (2) Å] (Table 1). This indicates a distinction between Lewis acid-base interactions for the two types of O atoms. The Cl atom coordinates from the apical position more weakly to the tetracoordinate basal plane around the Cu atom, forming a square-pyramidal geometry, then the complexes are related by the *a* glide forming the polymeric chain [Cl1-Cu1 = 2.2445 (6) Å, Cl1- $Cu1^{i} = 2.7546$ (9) Å, $Cu1 - Cl1 - Cu1^{i} = 124.04$ (3)° and $Cl1 - Cu1^{i} = 124.04$ (3)° and Cl1 -Cu1ⁱ-Cl1ⁱ = 101.38 (2)°; symmetry code: (i) $-\frac{1}{2} + x, \frac{1}{2} - y, z$] (Fig. 1). The two different Cu-Cl distances in the title

Figure 1

ORTEPII (Johnson, 1976) drawing of the title compound, showing the atomic numbering scheme. Ellipsoids for non-H atoms are shown at the 50% probability level.

compound are similar to those in the 5-formyluracil thiosemicarbazone–Cu^{II} complex [apical Cu–Cl = 2.665 (3) Å and basal Cu–Cl = 2.260 (3) Å], and the longer apical Cu–Cl bond is due to a Jahn–Teller effect (Ferrari *et al.*, 1998). The polymeric chain and an analogous coordination sphere were observed in the crystal structure of *catena*-poly[bis(2-aminopyrimidine)aquacopper(II)- μ -sulfato dihydrate] (Lumme *et al.*, 1996).

In the crystal structure of (II), there are $O-H\cdots O$ hydrogen-bond interactions between the solvate water molecules and the deprotonated O atoms of the maltolate ligands, and between the solvate water molecules and the copper-coordinated water molecules (Table 2). Also, stacking interactions exist between neighboring pyran rings $[O1\cdots C1^{ii} = 3.493 (3) \text{ Å}, C2\cdots C4^{ii} = 3.506 (3) \text{ Å} and C3\cdots C5^{ii} = 3.515 (4) \text{ Å}; symmetry code: (ii) <math>-x, -y, 1 - z$].

The title compound is composed of maltolate and metal in a 1:1 ratio. This is the first observation of a 1:1 metal complex of maltol, although 2:1 and 3:1 maltolate-metal complexes, with Zn^{II} (2:1), Sn^{II} (2:1), Fe^{III} (3:1) and Al^{III} (3:1), have been reported. In all the metal complexes of maltol reported, the bidentate maltolate ligand forms a five-membered chelate ring.

Experimental

Maltol and $CuCl_2 \cdot 2H_2O$ were dissolved in a 50% ethanol-water mixture in a 4:1 molar ratio. Green plate-shaped crystals of (II) were obtained by slow evaporation at room temperature.

Crystal data

$[Cu(C_6H_5O_3)Cl(H_2O)] \cdot H_2O$ $M_r = 260.13$ Monoclinic, $P2_1/a$ a = 7.163 (2) Å b = 18.604 (2) Å c = 7.357 (2) Å $\beta = 113.38$ (2)° V = 899.9 (4) Å ³ Z = 4	$D_x = 1.920 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 22 reflections $\theta = 14.6-15.0^{\circ}$ $\mu = 2.71 \text{ mm}^{-1}$ T = 296.2 K Plate, green $0.40 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Rigaku AFC-5 <i>R</i> diffractometer ω -2 θ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.527, T_{\max} = 0.763$ 2302 measured reflections 2069 independent reflections 1778 reflections with $I > 2\sigma(I)$	$R_{int} = 0.009$ $\theta_{max} = 27.5^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 24$ $l = -9 \rightarrow 8$ 3 standard reflections every 150 reflections intensity decay: 0.5%
Refinement Refinement on F^2 R(F) = 0.021 $wR(F^2) = 0.058$ S = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0270P)^{2} + 0.3833P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Lambda/\sigma)_{max} = 0.001$

2069 reflections132 parametersH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0270P)^{2} + 0.3833P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0047 (8)

The H atoms of the ligand molecule were allowed for as riding atoms. Those of the water molecules were located from difference

Table 1

Selected geometric parameters (Å, °).

Cl1-Cu1	2.2445 (6)	Cu1-O4W	1.965 (1)
Cl1-Cu1 ⁱ	2.7546 (9)	O2-C1	1.272 (2)
Cu1-O2	1.957 (1)	O3-C2	1.339 (2)
Cu1-O3	1.947 (1)		
Cl1-Cu1-O2	169.82 (6)	O2-Cu1-O4W	86.49 (6)
Cl1-Cu1-O3	93.45 (4)	O3-Cu1-Cl1 ⁱⁱ	91.98 (5)
Cl1-Cu1-O4W	94.13 (5)	O3-Cu1-O4W	169.75 (6)
Cu1-Cl1-Cu1 ⁱ	124.04 (3)	Cu1-O2-C1	110.9 (1)
Cl1 ⁱⁱ -Cu1-Cl1	101.38 (2)	Cu1-O3-C2	109.4 (1)
O2-Cu1-Cl1 ⁱⁱ	88.72 (6)	O2-C1-C2	118.0 (2)
O2-Cu1-O3	84.84 (5)	O3-C2-C1	116.5 (2)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O4W-H4WA\cdots O5W^{i}\\ O4W-H4WB\cdots O5W\\ O5W-H5WA\cdots O3^{iii}\\ O5W-H5WB\cdots O3^{ii}\\ \end{array}$	0.79 (2)	1.94 (2)	2.711 (2)	168 (3)
	0.80 (2)	1.94 (2)	2.706 (2)	162 (2)
	0.77 (2)	2.16 (2)	2.910 (2)	164 (3)
	0.79 (2)	1.98 (2)	2.768 (2)	172 (3)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z$; (ii) 1 + x, y, 1 + z; (iii) $\frac{1}{2} + x, \frac{1}{2} - y, 1 + z$.

Fourier maps and their coordinates refined with fixed isotropic displacement parameters.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1078). Services for accessing these data are described at the back of the journal.

References

- Ahmed, S. I., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. & Laurie, S. H. (2000). *Polyhedron*, **19**, 129–135.
- Ahmet, M. T., Frampton, C. S. & Silver, J. (1988). J. Chem. Soc. Dalton Trans. pp. 1159–1163.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Barret, M. C., Mahon, M. F., Molloy, K. C., Steed, J. W. & Wright, P. (2001). *Inorg. Chem.* 40, 4384–4388.
- Bhattacharya, S., Seth, N., Gupta, V. D., Nöth, H., Polborn, K., Thomann, M. & Schwenk, H. (1994). *Chem. Ber.* **127**, 1895–1900.
- Burgess, J., Fawcett, J., Russell, D. R., Hider, R. C., Hossain, M. B., Stoner, C. R. & van der Helm, D. (1996). Acta Cryst. C52, 2917–2920.
- Caravan, P., Gelmini, L., Glover, N., Herring, F. G., Li, H., McNeill, J. H., Rettig, S. J., Setyawati, I. A., Shuter, E., Sun, Y., Tracey, A. S., Yuen, V. G. & Orvig, C. (1995). J. Am. Chem. Soc. 117, 12759–12770.
- Creeth, J., Molloy, K. C. & Wright, P. (2000). Oral Cove Compositions. International Patent WO 00/16736.
- Denekamp, C. I. F., Evans, D. F., Slawin, A. M. Z., Williams, D. J., Wong, C. Y. & Woollins, J. D. (1992). J. Chem. Soc. Dalton Trans. pp. 2375–2382.

metal-organic compounds

- Ferrari, M. B., Fava, G. G., Leporati, E., Pelosi, G., Rossi, R., Tarasconi, P., Albertini, R., Bonati, A., Lunghi, P. & Pinelli, S. (1998). J. Inorg. Biochem. 70, 145–157.
- Finnegan, M. M., Rettig, S. J. & Orvig, C. (1986). J. Am. Chem. Soc. 108, 5033– 5035.
- Fryzuk, M. D., Jonker, M. J. & Rettig, S. J. (1997). Chem. Commun. pp. 377– 378.
- Harvey, R. S., Reffitt, D. M., Doig, L. A., Meenan, J., Ellis, R. D., Thompson, R. P. & Powell, J. J. (1998). *Aliment. Pharmacol. Ther.* **12**, 845–848.
- Hedlund, T. & Öhman, L.-O. (1988). Acta Chem. Scand. Ser. A, 42, 702–709.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lord, S. J., Epstein, N. A., Paddock, R. L., Vogels, C. M., Hennigar, T. L., Zaworotko, M. J., Taylor, N. J., Driedzic, W. R., Broderick, T. L. & Westcott, S. A. (1999). *Can. J. Chem.* 77, 1249–1261.

Lumme, P. O., Knuuttila, H. & Lindell, E. (1996). Acta Cryst. C52, 51-56.

- Molecular Structure Corporation (1992). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation & Rigaku (2000). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667– 1673.
- Sun, Y., Melchior, M., Summers, D. A., Thompson, R. C., Rettig, S. J. & Orvig, C. (1998). *Inorg. Chem.* 37, 3119–3121.
- Tsubouchi, R., Htay, H. H., Murakami, K., Haneda, M. & Yoshino, M. (2001). *Biometals*, **14**, 181–185.
- Yu, P., Phillips, B. L., Olmstead, M. M. & Casey, W. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2119–2125.